
Doing PITR Right
(Point-In-Time-Recovery)

Who Am I?

Stephen Frost
Sr. Database Engineer @ Resonate, Inc.

 Digital Media Company working with big
data – PostgreSQL, Hadoop, etc.

 We're Hiring!
techjobs@resonateinsights.com

PostgreSQL Major Contributor
 Implemented Roles (8.1)
 Column Level Privileges (8.4)
 Contributions to PL/pgSQL, PostGIS

What is PITR?

Backup Strategy using PG's Write-Ahead-Log
(WAL)

 All changes are written to WAL first
 WAL used for crash recovery

PITR requires
 Full backup
 WAL files since last full backup

Full backup can be taken while DB is on-line

Why PITR?

 What about pg_dump?
 Single-threaded, not practical for
large-scale databases

 Restore can be parallel, but still very slow
 Data has to be re-parsed
 Indexes must be rebuilt

 Keeps a very long running transaction
open..

 But we have replication!
 What happens when you drop a table on
the master?

 … or someone else does?
 Filesystem snapshots!

 You only have one filesystem..?
 Snapshot must be consistent across all
volumes...

archive_command

 Simple – NEVER overwrite files, so check
for them first

 test ! -f /mnt/server/archivedir/%f && \
 cp %p /mnt/server/archivedir/%f'
 Advanced – Test, test, test! Verify return
codes.

 my_shell_script.sh %p %f
 Remote – Minimal and really insufficient-
needs more

 scp %p remote:path/%f
 Ensure the archive command ONLY returns
0 (true) on success

 Non-zero should be returned for failure OR
if the file already archived
 PG will re-attempt periodically

 Monitor your archiving or PG may run out
of disk space!

Backing up PG

 Configure PG for archiving first!
 (and check that's it's working)

 Before copying files, run:
 psql -c “select pg_start_backup('mylabel',
true);”

 'mylabel' can be anything; might use
where the backup is stored to..

 Copy all files in the 'data' directory, using
'rsync' or 'tar'
 Make sure to include all tablespace
directories!

 Include config files, regular PG log files,
etc.

 Exclude pg_xlog, postmaster.pid,
postmaster.opts

 After copying files, run:
 psql -c “select pg_stop_backup();”

 Put this all in a shell script
 Include timing info, capture all output,
verify return codes, etc..

pg_basebackup

 Makes that whole backup thing WAY easier
 Configure PG for archiving first!

 (and check that's it's working)
 Uses the PG replication protocol

 Needs max_wal_senders set > 0
 Connects to the running PG database
 Streams the data files over the connection

 Important arguments
 -D – directory to output files to;
tablespaces go to same path as on master

 -F format (plain or tar)
 -X method (fetch or stream); to include
xlog files in backup

 -l <label>, -z (compress), -c fast
(checkpoint), -P (progress)

 Reminder: Back up your config files, regular
log files, etc!

pg_receivexlog

 Streams transaction log to files from PG
 Connects to PG using replication protocol
 Removes the need for archive_timeout
 Important arguments:

 -D dir; directory to store the files
 Still use archive_command!

 Have it test that the file has been
archived

 sleep 5 && test -f /mnt/server/archivedir/
%f

 Sleep required due to async replication
 Otherwise, PG might recycle logs prior to
being archived

WAL-e

 System to push PG backups and WAL to
Amazon's S3

 http://github.com/wal-e/wal-e
 Includes:

 Compression
 Encryption
 Full base backups
 WAL files
 Restore of base backups
 Restore of WAL files

 Used extensively by Heroku
http://heroku.com

http://github.com/wal-e/wal-e
http://heroku.com/

Restoring!

 Test your backups!
 Test by doing a restore!
 Test regularly! (more than once a year..)
 Test multiple scenarios

 What if you had to restore from tape?
 From off-site backups?
 Fail-over to your 2nd site?

Restoring with PITR

 Restore your full backup
 Ideally, somewhere else.
 pg_xlog should be empty or not there
 Ensure it exists with correct perms
 Verify tablespace symlinks and files
 If old system still around:

 Copy files from the old pg_xlog into the
new

 May have unarchived files, allowing
restore to closer to time of crash

recovery.conf

 Create a recovery.conf file
 restore_command – command used to
retrieve archived xlog files
 %f – filename to be restores
 %p – locataion to restore file to
 Must only return zero on success
 Will be asked for files that were not
archived

 Recovery target options:
recovery_target_....
 name – Point created with
pg_create_recovery_point()

 time – Timestamp to recover up to and
including

 xid – transaction ID, up to and including
commit

 Inclusive – for time or xid, set to false to
stop before time/xid

 timeline – Recovery into specific timeline

Simple restore

 Simple recovery.conf
 restore_command = 'cp
/mnt/server/archivedir/%f "%p"'

 recovery_target_time = '2013-03-19
12:00'

 pause_at_recovery_target = false
 Recovers up to the specified time
 Immediately moves into 'on-line' mode at
end

Advanced PITR Restore

 More complex recovery.conf
 restore_command = 'myscript %f %p'
 recovery_target_xid = '1234'
 pause_at_recovery_target = true

 recovery_target_xid would need to come
from user log files which include xids

 Pauses after recovery, allows user to
connect and issue queries to check if they
are at the right spot.

 If recovered to the right point, run to
complete recovery:
 select pg_xlog_replay_resume();

Demo?

Questions?

Thank You

Stephen Frost

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

