
PostgreSQL (System) Administration

PGCon - 2014
Ottawa, Canada

Stephen Frost
sfrost@snowman.net

Resonate, Inc. • Digital Media • PostgreSQL • Hadoop • techjobs@resonateinsights.com • http://www.resonateinsights.com

mailto:techjobs@resonateinsights.com
http://www.resonateinsights.com

Stephen Frost
•PostgreSQL

•Major Contributor, Committer
•Implemented Roles in 8.3
•Column-Level Privileges in 8.4
•Contributions to PL/pgSQL, PostGIS

•Resonate, Inc.
•Principal Database Engineer
•Online Digital Media Company
•We're Hiring! - techjobs@resonateinsights.com

mailto:techjobs@resonateinsights.com

Do you read...
•planet.postgresql.org

Agenda
•Terms
•Installation
•Initial configuration
•Getting connected
•Users / Roles
•Permissions
•Tuning
•Backups
•Monitoring
•Extensions

Terms
•"Cluster" ; aka "Instance"

•One PG server
•one "postmaster" - listens on one port
•One set of data files (including tablespaces)
•Users/Roles and tablespaces at cluster level
•Replication at cluster level
•One stream of Write-Ahead-Log (WAL)

Terms (continued)
•WAL

•Data stream where changes go first
•Written to WAL is considered 'committed'
•WAL is always CRC'd
•On crash, WAL is replayed
•Contention point with high write volume

Terms (continued)
•Table

•"Fixed" set of columns (can add/remove)
•Variable number of rows

•Column
•Named field inside of a table
•Fixed data type (can be complex)

•Row
•Single instance of all fields of a table
•Fields for a row are stored together

Terms (continued)
•Tablespace

•Alternate directory/filesystem for PG to store data
•Can contain objects from any/multiple databases

•Database
•Lives inside a cluster
•Schemas at the database level

•Schema
•Lives inside a single database
•Do not belong to any tablespace
•Tables, views, functions at the schema level

Terms (continued)
•Inheiritance

•Parent/Child tables
•Querying parent returns rows from children also
•Children can add columns to those parent has
•Differs from SQL:1999 inheiritance

•Partition
•Implemented using inheiritance in PG
•CHECK constraints can be used to filter

•Shard
•One Cluster among many, data spread-out

Installation
•Debian/Ubuntu/etc

•apt.postgresql.org
•Add PGDG sources.list.d

•RedHat/CentOS/etc
•yum.postgresql.org
•Download & Install PGDG RPM

•Multiple Major Versions

Debian Install
•Configs in /etc/postgresql/X.Y/main/
•Initial DB in /var/lib/postgresql/X.Y/main
•Binaries into /usr/lib/postgresql/X.Y/bin
•Logs into /var/log/postgresql/
•Startup logs in /var/log/postgresql also
•One init script starts all major versions

Debian "Clusters"
•Debian provides wrappers and helper scripts
•pg_lsclusters - lists all PG clusters
•pg_ctlcluster - Control specific clusters
•--cluster option - Specify specific cluster

•psql --cluster 9.2/main
•pg_dump --cluster 9.2/main, etc ...

RedHat Install
•Configs in data directory
•Default DB in /var/lib/pgsql/X.Y/data
•Create DB with 'service postgresql-9.2 initdb'
•Binaries into /usr/pgsql-X.Y/bin
•Logs into /var/lib/pgsql-X.Y/data/pg_log
•Startup logs in /var/lib/pgsql-X.Y/pgstartup.log
•Init script per major version

PostgreSQL Data Directory
•"Some thing in here do not react well to bullets."
•On Debian, just stay out of it
•On RedHat, be careful to only modify

•postgresql.conf
•pg_hba.conf
•pg_ident.conf
•pg_log/

•Do NOT touch files in pg_xlog or other dirs
•pg_xlog is PG's WAL- not just normal log files

Initial postgresql.conf
•listen_addresses = '*' (for external access)
•checkpoint_segments = 30+

•Uses more disk space in pg_xlog
•Never let that partition run out of space!

•checkpoint_completion_target = 0.9
•Targets finishing in 90% of time given

•effective_cache_size = half the RAM
•Never allocated, just for planning

•max_wal_senders = 3
•More later...

Logging
•postgresql.conf

•log_connections = on
•log_disconnections = on
•line_prefix= '%m [%p]: %q [%l-1] %d %u@%r %a '
•log_lock_waits = on
•log_statement = 'ddl'
•log_min_duration_statement = 100
•log_temp_files = 0
•log_autovacuum_min_duration = 0

mailto:%u@%r

pg_hba.conf
•Controls how users are authenticated
local DATABASE USER METHOD [OPTIONS]
host DATABASE USER ADDRESS METHOD [OPTIONS]
hostssl DATABASE USER ADDRESS METHOD [OPTIONS]
hostnossl DATABASE USER ADDRESS METHOD [OPTIONS]

•Read in order, top-to-bottom, first match is used
•'hostssl' requires SSL connection, no is not SSL
•Special DBs - 'all', 'sameuser', 'replication'
•Special Users - 'all', '+' prefix for role membership
•Address can be IPv4 or IPv6, can include CIDR mask
•Special 'reject' method

Authentication Methods
•The ones you should use ...
•peer

•Secure, unix-socket-based auth
•Checks the Unix username of the user

•gss (Kerberos)
•Integreates w/ MIT/Heimdal Kerberos and AD
•Recommended for Enterprise deployments

•cert (SSL Certificate)
•Client-side certificate based authentication
•Use pg_ident to map CNs to PG usernames

Authentication Methods
•Acceptable, but not ideal...
•md5

•Stock username/password
•Use SSL if you're worried about security

•pam
•Modules run as postgres user
•Can't be used directly w/ pam_unix
•saslauthd can make it work (pam_sasl, saslauthd)

•radius
•Use SSL if you're worried about security

Auth Method Don'ts
•trust - Never use this- no auth done
•password - Password sent in cleartext
•sspi

•Windows-specific
•Uses Kerberos/GSSAPI underneath

•ident
•Insecure, don't trust it- use 'peer' for local

•ldap
•Auths against an LDAP server
•Use Kerberos/GSSAPI if you can

pg_ident.conf
•Defines mappings which are used in pg_hba
map-name auth-user pg-user
kerbnames sfrost@SNOWMAN.NET sfrost
certname stephen.frost sfrost

•External-user to PG-user mappings
•Unix user 'joe' can be PG user 'bob'
•Regexps can be used- but be careful
•Also works for Kerberos, client certs, etc.

Debian configs
•Extra config files in Debian/Ubuntu
•start.conf

•Controls start of this cluster
•Can be 'auto', 'manual', 'disabled'

•pg_ctl.conf
•Options to pass to pg_ctl
•Generally don't need to modify it

•environment
•Controlls environment PG starts in
•Generally don't need to modify it

RedHat configs
•Basically just the init.d scripts.

Connecting
•sudo su - postgres
•psql
•\? to see backslash-commands
•\h to get help on SQL queries/commands
•Exit with \q or ctrl-d
•psql -h localhost

Looking around
•table pg_stat_activity; - aka 'w'
•\l - list databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+-----------------------
 postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +
 template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +

•\dn - list schemas
 Name | Owner
--------+----------
 public | postgres

•\db - list tablespaces
 Name | Owner | Location
------------+----------+----------
 pg_default | postgres |
 pg_global | postgres |

User setups
•createuser / CREATE USER
•\password to set passwords
•Privileges

•Superuser- Do not give this out
•CreateRole- Creation and modification of roles
•CreateDatabase- Allows database creation
•Login- Allows user to connect to DB
•Replication- Only for replication/system user
•Admin- Allows changing role memberships
•Inherit- Automatically get GRANTED privileges

Roles
•Users are really roles
•Groups are implemented with roles
•CREATE ROLE (or just createuser --nologin)

•Same privilege options
•Can start as nologin, then be granted login
•Can cascade

•Any role can be GRANT'd to any other role
•Inherit is default, acts like group privs
•Noinherit means user must run 'set role', ala sudo

Permissions
•'public' means 'all users'
•GRANT / REVOKE to give/take away privs, roles, etc
•CONNECT privs on the database (public by default)
•schemas - CREATE, USAGE

•recommend dropping 'public' or revoke CREATE
•Use per-user or per-app schemas

•tables - SELECT/INSERT/UPDATE/DELETE/TRUNCATE
•view - same (incl update!); execute as view owner
•columns - SELECT/INSERT/UPDATE
•functions - 'SECURITY DEFINER' are akin to setuid

Default perms
•Generally 'secure-by-default'

•Except functions- EXECUTE granted by default
•Owners have all rights on their objects
•Membership in owning role == ownership

•ALTER DEFAULT PRIVILEGES - for roles
•FOR ROLE ... IN SCHEMA ... GRANT
•Can't be applied to just a schema

•GRANT ... ON ALL ... IN SCHEMA
•For tables, views, sequences, functions
•One-time operation, new tables will not have privs

Tablespaces
•Permissions

•Perms must be 0700, owned by postgres
•Must explicitly GRANT create rights

•Implementation
•Symlinks in pg_tblspc directory
•Recommend against messing with them directly
•Must be fully-qualified

•GUCs
•default_tablespace
•temp_tablespaces

Tuning
•For a dedicated server
•shared_buffers

•Will be dedicated to PG for cacheing
•Up to half of main memory
•Try 2G on larger servers, more may not help
•Pre-9.3, need to bump sysctl params
•Post-9.3, you don't!
•Defaults to 128MB

Tuning (continued)
•work_mem

•Used for in-memory hashing, sorts, etc
•Can be increased inside a given connection
•Used many times over- not a hard limit
•Per connection, so be careful
•Defaults to 1MB (wayy too small..)

•maintenance_work_mem
•Used for building indexes
•Make it larger before building an index
•Defaults to 16MB (that's a very small index)

Tuning (continued)
•effective_cache_size

•Tells PG how much of the DB is in memory
•Half of main memory
•Never allocated, only for planning purposes
•Defaults to 128MB

•autovacuum
•On a high-rate server, make it more aggressive
•Increase max_workers
•Decrease autovacuum_vacuum_cost_delay
•Defaults are for lightly loaded systems

Tuning (continued)
•pg_xlog

•Sequential writes
•Put on dedicated disks
•Monitor very closely for space

•pg_stat_tmp
•Consider tmpfs
•Written to by stats collector constantly
•File per-DB in 9.3+, helps a lot

Slow Queries
•Logging all queries hurts
•log_min_duration_statement

•Logs queries over time
•Includes duration (no need for log_duration)

•pgfouine - Log Analyzer
•Best with specific log_line_prefix
•Generates very nice reports
•Various sorts- total time, max length, etc

Config Bump-Ups
•max_connections = 100

•Consider using pg_bouncer
•# connections == # of CPUs is ideal

•shared_buffers = couple gig
•Probably not more than 3-4G (Test!)

•maintenance_work_mem = maybe a gig
•Used for building indexes

•max_locks_per_transaction = 128
•More if you have lots of objects
•# locks available is actually this * max_conn

Simple Backups
•Extremely important!
•pg_basebackup w/ WAL recieve

•Binary-based backup
•MUST have WAL files backed up also!
•Needs to connect to 'replication' DB

•pg_dump
•Logical, text-based backup
•Does not back up indexes, must rebuild
•Requires lightweight locks on everything

•Test restoring your data!

Parallel Backups
•pg_dump support in recent versions
•pg_restore also supports- not transactional
•Binary backups

•Use rsync
•Parallelize by tablespace
•No parallel option for pg_basebackup (yet)

PITR Backups
•Point-in-time-Recovery w/ WAL

•From base-backup, play forward WAL
•Can stop at any point-in-time

•Requires a base/binary backup (pg_basebackup)
•Must archive all WAL

•WAL archived with archive_command
•Only WAL after a base backup is useful

archive_command
•%f replaced with WAL filename
•%p replaced with full path to WAL

•test -f /archive/%f &&
•cp %p /archive/%f

•Be sure to test
•Monitor your postgres logs!
•Must return zero ONLY on success

Restoring!
•Make sure to test your backups!
•Test by doing a restore!
•Test regularly! (at least once a year..)
•Consider multiple scenarios

•Tape-based restore?
•Restore from off-site?
•Fail-over?
•How much data lost?
•How much downtime?

recovery.conf
•restore_command
•%f is WAL file needed
•%p is where to put it

•cp /archive/%f %p
•Only return zero when successful!
•Will be called for non-existant files

Replication
•Read-only streaming slaves
•Set up WAL archiving

•Not strictly required
•Very recommended

•Initial copy with pg_basebackup
•Configure connection in recovery.conf
•recovery.conf must live in data dir
•Monitor lag- replica can fall behind

Monitoring
•check_postgres.pl
•Useful with Nagios, Icinga, MRTG, etc.
•Provides metrics as well as monitoring
•Allows custom query for monitoring
•Minimum set of checks
archive_ready (if doing WAL archiving) --- Number of WAL .ready files
autovac_freeze --- How close to Autovacuum Max Freeze
backends (Metric) --- Number of Backends running
dbstats (Metrics) --- Lots of different stats
listener (If using LISTEN/NOTIFY) --- Checks if anyone is LISTEN'ing
locks (Metric) --- Number of locks held
pgbouncer options (if using pgbouncer) --- Various pgbouncer checks
txn_idle --- Transactions idle for X time
txn_time --- Transactions longer than X time
txn_wraparound --- How close to transaction wraparound

Log Monitoring
•PG logs are multi-line
•tail_n_mail works great
•Other solutions do not understand PG logs

•syslog-based
•logstash
•logcheck

•Automatically-processed CSV log

Extensions
•Install -contrib package
•Use PGXN - http://pgxn.org
•table pg_available_extensions;
 name | default_version | installed_version | comment
--------------------+-----------------+-------------------+--
 file_fdw | 1.0 | | foreign-data wrapper for flat file access
 dblink | 1.0 | | connect to other PostgreSQL databases from within a database
 plpgsql | 1.0 | 1.0 | PL/pgSQL procedural language
 pg_trgm | 1.0 | | text similarity measurement and index searching based on trigrams
 adminpack | 1.0 | | administrative functions for PostgreSQL
 ip4r | 2.0 | |
 hstore | 1.1 | | data type for storing sets of (key, value) pairs

•adminpack allows superuser to change anything..
•\dx lists installed extensions

http://pgxn.org

Extensions (cont'd)
•Requires superuser to install
•Often include compiled C code - .so's

•C code can crash the backend, use caution
•C code has access to everything

•PGXN is pretty 'open'
•Modules from -contrib maintained by PGDG

Thank you!
Stephen Frost

sfrost@snowman.net
@net_snow

	Stephen Frost
	Do you read...
	Agenda
	Terms
	Terms (continued)
	Terms (continued)
	Terms (continued)
	Terms (continued)
	Installation
	Debian Install
	Debian "Clusters"
	RedHat Install
	PostgreSQL Data Directory
	Initial postgresql.conf
	Logging
	pg_hba.conf
	Authentication Methods
	Authentication Methods
	Auth Method Don'ts
	pg_ident.conf
	Debian configs
	RedHat configs
	Connecting
	Looking around
	User setups
	Roles
	Permissions
	Default perms
	Tablespaces
	Tuning
	Tuning (continued)
	Tuning (continued)
	Tuning (continued)
	Slow Queries
	Config Bump-Ups
	Simple Backups
	Parallel Backups
	PITR Backups
	archive_command
	Restoring!
	recovery.conf
	Replication
	Monitoring
	Log Monitoring
	Extensions
	Extensions (cont'd)

