
© 2011 Noblis, Inc.

Identifying Slow Queries,
and Fixing Them

Presented to: PostgresOpen 2011, Chicago
Date: September 15th, 2011

2

Introduction

• Stephen Frost
– System Architect/Designer
– DBA, Unix Administrator
– PostgreSQL/PostGIS Hacker
– Added Roles in 8.1, Column-level Privs in 8.4

• Noblis, Inc.
– Nonprofit science, technology and strategy

organization
– http://www.noblis.org

3

Finding the slow ones

(Queries...)

4

Monitor your systems!

• PostgreSQL Logs
– Configure what gets logged!

– Log checkpoints, connections, DDL statements! Perhaps more..

• Your favorite monitoring solution
– Availability, Alarm-based (eg: Nagios, w/ check_posgres)

– Performance measuring (eg: munin, stats w/ pg_bouncer)

– PgFouine for log file analysis

• check_postgres script

– Includes lots of valuable checks

– Bloat checking

– Idle connection warnings

– Number of WAL files (in case archiving fails)

– Can integrate w/ munin/cacti/MRTG too!

5

Finding Slow Queries

• postgresql.conf

– log_min_duration_statement – just needs reload

– Lots of other logging options:
• log_line_prefix

• log_connections / log_disconnections

• log_duration

• log_lock_waits

• log_statement

• track_functions

• Reviewing PG logs
– LOG: duration: 448.495 ms statement: select generate_series(1,1000000);

– What's in that duration?

– Difference with psql's \timing option

6

PG duration logging

• More PG logs
– Just log_min_duration_statement:

• LOG: duration: 448.495 ms statement: select generate_series(1,1000000);

– vs. log_statement = all && log_min_duration_statement:

• LOG: statement: select generate_series(1,1000000);

• LOG: duration: 513.041 ms

– vs. log_statement = none && log_min_duration_statement && log_duration:

• LOG: duration: 0.659 ms

• LOG: duration: 457.366 ms statement: select generate_series(1,1000000);

– If you can afford log_statements=all and log_duration you can gather lots of info, but
it's not free to log at that level (typically not done in high-transaction production
systems)

– log_min_duration_statement gives 'best of both worlds'- just log the slow ones, but
be careful what other options you have enabled or it may get confusing

– Lots of fast queries, done sequentially, can also make things (page loads) slow!

7

Now we've found them …

Why are they slow?

8

Understanding why queries are slow

• The “easy” stuff-
– Poor PG configuration
– Dead tuples / bloat

• The next level- Database Magic

9

Poor PG Configuration
(you used the defaults...)

• Important PG GUCs (configuration options):
– work_mem

– maintenance_work_mem

– effective_cache_size

– shared_buffers

– checkpoint_segments

• Watch for differences between Prod & Dev

– Need to understand them, if any

– May get different plans if different

– “Unseen” differences

• Statistics data may be different

• Different hardware

• Warm-up Time

10

Dead Tuples / Bloat

• VACUUM marks records reusable, if possible

– Reusable tuples will be used for new inserts, etc

– However, PG has to handle those tuples on queries

• Records marked as deleted but not reusable yet

– Ongoing transactions

• Bloat can exist in both tables and indexes

• check_postgres.pl

– Can identify bloat in tables/indexes

– Some bloat is GOOD, but too much will make queries
slower (lots of extra/unnecessary data to process)

• CLUSTER will re-write a table and eliminate dead tuples.

11

Database Magic, or how it works

• There is no magic here, sadly.

• Getting data:

– Sequentially step through EVERY record
• SeqScan Node
• Bulk, very fast at going through a table

– Pick out SPECIFIC records, using an index
• Index Scan Node
• Very slow for bulk data
• Can return data in-order
• Index needs to be there..

12

More Magic

• Putting things together (Joins)

– Loop through and scan table for match

• Nested Loop Node

• Works for small data sets

– Order two tables, then walk through each Merging them

• Merge Join Node

• Requires sorted inputs

• Good for bulk operations, esp. work loads that won't fit in memory

– Build a hash table (of the smaller table) then step through

• Hash Join Node

• Requires lots of memory

• Very fast, but slow to start

• Adding it all up (Aggregates)

– Look at all rows that qualify

– Can be very expensive

13

What's the best plan?

• It depends!

• How's the database know?

– Gathers statistics using ANALYZE

– Automatically done by auto-vacuum

• What if the database (aka- the stats) are wrong?

– You get bad plans!

– Look for differences in row estimates from explain analyze:

– Index Scan using my_idx on my_table (cost=0.00..5719.56
rows=9055 width=10) (actual time=0.015..87.689
rows=163491 loops=1)

– May need to adjust statistics target

14

What plan did PG decide to use?!

15

Understanding “explain”

• Node types: Hash, Hash Join, Seq Scan

• Lots of other node types

• What is the cost?

• explain output:

16

More Explain

• With “where”

• Very different plan!

• More nodes: Nested Loop, Index Scan

• Lower cost, much fewer rows

17

Understanding “explain analyze”

• explain analyze output

• Lots more info- actual times, per-node info, memory
usage!

• Two times? - backend runtime, psql timing

18

More explain analyze

• Explain analyze with where output

• Back to the other plan, with actuals, total runtime
• Still a seqscan on pg_namespace..?

19

Other explain output options

• Other output options
– XML, JSON, YAML

• Tools to analyze explain output
– PgAdmin3
– explain.depesz.com

• PG Log file analyzer, includes tracking timing info
– pgFouine

20

Automating collection of “explain”s

• auto_explain
– Logs explain info for long queries

• Enabling:
– shared_preload_libraries = 'auto_explain'
– set explain.log_min_duration = 50;
– Can also output 'explain analyze' (expensive!)
– Set explain.log_nested_statements = true;

• Considers logging plans which are inside functions

21

But how to change the plan?
How to fix the queries..?!

22

Fixing Them

• Low-hanging fruit, but catch a lot..

– Query returning 1 row using SeqScan? - Check for an index

– MergeJoin used for “small” data sets? - Check work_mem

– Nested Loop used with large set? - Bad row estimates?

• Make sure analyze is being done

• Increase statistics target for the relations if possible

– DELETE's slow? Make sure you have indexes on Foreign Keys

• Harder items:

– Check over your long-running queries

– Use stored procedures / triggers

– Partitioning large tables

– Consider Partial Indexes / Functional Indexes

23

SeqScan returns 1 row

• Lack of index on username

24

Using an index scan

• Much better performing, what about like?

25

Text Pattern Searches

• Need an appropriate index

• Pattern needs to be anchored and simple
• PG has excellent Full Text Search & Indexing

26

MergeJoin for 'small' data
• Merge vs Hash and work_mem

27

Nest Loops can be good

• For small sets

28

Slow DELETE
• Explain analyze on delete, what's the difference?

29

Prepared queries

• They're good, honest

• Plan once, run many

– Not as much info to plan with, plans may be more stable

– Variables aren't substituted in until execution

– No constraint exclusion though

• How to explain/explain analyze:

– prepare q as select * from table where x = $1;

– explain execute q('myid');

– explain analyze execute q('myid');

• Placeholders in explain output ($1 instead of 'myid')

30

Query Review

• select count(*) from table;

– Expensive, must check every record in the table

• select * from table;

– Returns every row, do you really need them all?

– Order By / Limit can help PG optimize queries!

• select * from table where id = 1;

– Do you need every column? Wide columns cost / TOAST

• select * from a, b, c where a.x = b.x;

– Missing join condition for c!

– Cartesian product with a/b to c

– Use join syntax:

• select * from a join b using (x) join c using (x);

31

More Queries

• select * from x where myid in

(select myid from big_table);

– Turn it into a join:

• select x.* from x join big_table using (myid);

• select * from x where myid not in

(select myid from big_table);

– Left-join instead:

• select x.* from x left join big_table using (myid)

where big_table.myid is NULL;

– Not exists also:

• select * from x where not exists

(select * from big_table where big_table.myid = x.myid)

32

More queries...

• Expensive to generate table? Use CTE (Common Table
Expressions, aka WITH)

• select *,

(select sum(my_expensive_view.x) from my_expensive_view)

from my_expensive_view;

• WITH my_view AS (select * from my_expensive_view),

my_sums AS (select sum(my_view.x))

select my_view.*, my_sums.sum from my_view, my_sums;

• CTEs can also be used to implement recursion!

33

Really need fast count(*)?

• Does it have to be accurate or just an estimation?

– Look at pg_class.reltuples for an estimate

• Use a trigger if it needs to be accurate

– Handle bulk-loading independently though

• It's a trade-off

– Faster to get count(*) information

– Slower to insert/update the table
• create function my_count_func() returns trigger as $_$

BEGIN

UPDATE my_count = my_count + 1;

RETURN NEW;

END $_$ LANGUAGE 'plpgsql';

• create trigger my_count_trig after insert on my_table for each row execute procedure my_count_func();

34

What else can be done?

• Tuning PG GUCs

– work_mem – default 1MB is wayyy small

– maintenance_work_mem – default 16MB small

– effective_cache_size – default 128MB
• You have a server with 256MB of memory..?

– shared_buffers – default 24MB

• This is a real killer.. bump it to 1-2G, at least, on a server w/ >4G RAM,

up to 8GB (don't go above that w/o good testing..).

• Partial Indexes / Functional Indexes

• Improving statistics / analyze / auto-vacuum

• Tuning the background writer

– Consider making it more aggressive for heavy write loads

• Invest in hardware

– Lots of memory (adjust shared_buffers..)

– SSDs / Battery-Backed Write Cache RAID

35

Questions?

	PresentationTitleHere Presented to: ClientNameHere Date: DateHere
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

