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Introduction

• Stephen Frost
– System Architect/Designer
– DBA, Unix Administrator
– PostgreSQL/PostGIS Hacker
– Added Roles in 8.1, Column-level Privs in 8.4

• Noblis, Inc.
– Nonprofit science, technology and strategy 

organization
– http://www.noblis.org
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Finding the slow ones

(Queries...)
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Monitor your systems!

• PostgreSQL Logs
– Configure what gets logged!

– Log checkpoints, connections, DDL statements!  Perhaps more..

• Your favorite monitoring solution
– Availability, Alarm-based (eg: Nagios, w/ check_posgres)

– Performance measuring (eg: munin, stats w/ pg_bouncer)

– PgFouine for log file analysis

• check_postgres script

– Includes lots of valuable checks

– Bloat checking

– Idle connection warnings

– Number of WAL files (in case archiving fails)

– Can integrate w/ munin/cacti/MRTG too!
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Finding Slow Queries

• postgresql.conf

– log_min_duration_statement – just needs reload

– Lots of other logging options:
• log_line_prefix

• log_connections / log_disconnections

• log_duration

• log_lock_waits

• log_statement

• track_functions

• Reviewing PG logs
– LOG:  duration: 448.495 ms  statement: select generate_series(1,1000000);

– What's in that duration?

– Difference with psql's \timing option
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PG duration logging

• More PG logs
– Just log_min_duration_statement:

• LOG:  duration: 448.495 ms  statement: select generate_series(1,1000000);

– vs. log_statement = all && log_min_duration_statement:

• LOG:  statement: select generate_series(1,1000000);

• LOG:  duration: 513.041 ms

– vs. log_statement = none && log_min_duration_statement && log_duration:

• LOG:  duration: 0.659 ms

• LOG:  duration: 457.366 ms  statement: select generate_series(1,1000000);

– If you can afford log_statements=all and log_duration you can gather lots of info, but 
it's not free to log at that level (typically not done in high-transaction production 
systems)

– log_min_duration_statement gives 'best of both worlds'- just log the slow ones, but 
be careful what other options you have enabled or it may get confusing

– Lots of fast queries, done sequentially, can also make things (page loads) slow!
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Now we've found them …

Why are they slow?
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Understanding why queries are slow

• The “easy” stuff-
– Poor PG configuration
– Dead tuples / bloat

• The next level- Database Magic
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Poor PG Configuration
(you used the defaults...)

• Important PG GUCs (configuration options):
– work_mem

– maintenance_work_mem

– effective_cache_size

– shared_buffers

– checkpoint_segments

• Watch for differences between Prod & Dev

– Need to understand them, if any

– May get different plans if different

– “Unseen” differences

• Statistics data may be different

• Different hardware

• Warm-up Time 
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Dead Tuples / Bloat

• VACUUM marks records reusable, if possible

– Reusable tuples will be used for new inserts, etc

– However, PG has to handle those tuples on queries

• Records marked as deleted but not reusable yet

– Ongoing transactions

• Bloat can exist in both tables and indexes

• check_postgres.pl

– Can identify bloat in tables/indexes

– Some bloat is GOOD, but too much will make queries 
slower (lots of extra/unnecessary data to process)

• CLUSTER will re-write a table and eliminate dead tuples.
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Database Magic, or how it works

• There is no magic here, sadly.

• Getting data:

– Sequentially step through EVERY record
• SeqScan Node
• Bulk, very fast at going through a table

– Pick out SPECIFIC records, using an index
• Index Scan Node
• Very slow for bulk data
• Can return data in-order
• Index needs to be there..
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More Magic

• Putting things together (Joins)

– Loop through and scan table for match

• Nested Loop Node

• Works for small data sets

– Order two tables, then walk through each Merging them

• Merge Join Node

• Requires sorted inputs

• Good for bulk operations, esp. work loads that won't fit in memory

– Build a hash table (of the smaller table) then step through

• Hash Join Node

• Requires lots of memory

• Very fast, but slow to start

• Adding it all up (Aggregates)

– Look at all rows that qualify

– Can be very expensive
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What's the best plan?

• It depends!

• How's the database know?

– Gathers statistics using ANALYZE

– Automatically done by auto-vacuum

• What if the database (aka- the stats) are wrong?

– You get bad plans!

– Look for differences in row estimates from explain analyze:

– Index Scan using my_idx on my_table  (cost=0.00..5719.56 
rows=9055 width=10) (actual time=0.015..87.689 
rows=163491 loops=1)

– May need to adjust statistics target
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What plan did PG decide to use?!
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Understanding “explain”

• Node types: Hash, Hash Join, Seq Scan

• Lots of other node types

• What is the cost?

• explain output:
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More Explain

• With “where”

• Very different plan!

• More nodes: Nested Loop, Index Scan

• Lower cost, much fewer rows



17

Understanding “explain analyze”

• explain analyze output 

• Lots more info- actual times, per-node info, memory 
usage!

• Two times? - backend runtime, psql timing 
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More explain analyze

• Explain analyze with where output

• Back to the other plan, with actuals, total runtime
• Still a seqscan on pg_namespace..?
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Other explain output options

• Other output options
– XML, JSON, YAML

• Tools to analyze explain output
– PgAdmin3
– explain.depesz.com

• PG Log file analyzer, includes tracking timing info
– pgFouine
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Automating collection of “explain”s

• auto_explain
– Logs explain info for long queries

• Enabling:
– shared_preload_libraries = 'auto_explain'
– set explain.log_min_duration = 50;
– Can also output 'explain analyze' (expensive!)
– Set explain.log_nested_statements = true;

• Considers logging plans which are inside functions
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But how to change the plan?
How to fix the queries..?!
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Fixing Them

• Low-hanging fruit, but catch a lot..

– Query returning 1 row using SeqScan? - Check for an index

– MergeJoin used for “small” data sets? - Check work_mem

– Nested Loop used with large set? - Bad row estimates?

• Make sure analyze is being done

• Increase statistics target for the relations if possible

– DELETE's slow?  Make sure you have indexes on Foreign Keys

• Harder items:

– Check over your long-running queries

– Use stored procedures / triggers

– Partitioning large tables

– Consider Partial Indexes / Functional Indexes
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SeqScan returns 1 row

• Lack of index on username
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Using an index scan

• Much better performing, what about like?
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Text Pattern Searches

• Need an appropriate index

• Pattern needs to be anchored and simple
• PG has excellent Full Text Search & Indexing
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MergeJoin for 'small' data
• Merge vs Hash and work_mem



27

Nest Loops can be good

• For small sets
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Slow DELETE
• Explain analyze on delete, what's the difference?
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Prepared queries

• They're good, honest

• Plan once, run many

– Not as much info to plan with, plans may be more stable

– Variables aren't substituted in until execution

– No constraint exclusion though

• How to explain/explain analyze:

– prepare q as select * from table where x = $1;

– explain execute q('myid');

– explain analyze execute q('myid');

• Placeholders in explain output ($1 instead of 'myid')
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Query Review

• select count(*) from table;

– Expensive, must check every record in the table

• select * from table;

– Returns every row, do you really need them all?

– Order By / Limit can help PG optimize queries!

• select * from table where id = 1;

– Do you need every column?  Wide columns cost / TOAST

• select * from a, b, c where a.x = b.x;

– Missing join condition for c!

– Cartesian product with a/b to c

– Use join syntax:

• select * from a join b using (x) join c using (x);
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More Queries

• select * from x where myid in 

(select myid from big_table);

– Turn it into a join:

• select x.* from x join big_table using (myid);

• select * from x where myid not in

(select myid from big_table);

– Left-join instead:

• select x.* from x left join big_table using (myid) 

where big_table.myid is NULL;

– Not exists also:

• select * from x where not exists

(select * from big_table where big_table.myid = x.myid)
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More queries...

• Expensive to generate table?  Use CTE (Common Table 
Expressions, aka WITH)

• select *,

(select sum(my_expensive_view.x) from my_expensive_view)

from my_expensive_view;

• WITH my_view AS (select * from my_expensive_view),

my_sums AS (select sum(my_view.x))

select my_view.*, my_sums.sum from my_view, my_sums;

• CTEs can also be used to implement recursion!
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Really need fast count(*)?

• Does it have to be accurate or just an estimation?

– Look at pg_class.reltuples for an estimate

• Use a trigger if it needs to be accurate

– Handle bulk-loading independently though

• It's a trade-off

– Faster to get count(*) information

– Slower to insert/update the table
• create function my_count_func() returns trigger as $_$

BEGIN

UPDATE my_count = my_count + 1;

RETURN NEW;

END $_$ LANGUAGE 'plpgsql';

• create trigger my_count_trig after insert on my_table for each row execute procedure my_count_func();
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What else can be done?

• Tuning PG GUCs

– work_mem – default 1MB is wayyy small

– maintenance_work_mem – default 16MB small

– effective_cache_size – default 128MB
• You have a server with 256MB of memory..?

– shared_buffers – default 24MB

• This is a real killer..  bump it to 1-2G, at least, on a server w/ >4G RAM,

up to 8GB (don't go above that w/o good testing..).

• Partial Indexes / Functional Indexes

• Improving statistics / analyze / auto-vacuum

• Tuning the background writer

– Consider making it more aggressive for heavy write loads

• Invest in hardware

– Lots of memory (adjust shared_buffers..)

– SSDs / Battery-Backed Write Cache RAID
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Questions?
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